Resistance to thyroid hormone is modulated in vivo by the nuclear receptor corepressor (NCOR1).
نویسندگان
چکیده
Mutations in the ligand-binding domain of the thyroid hormone receptor β (TRβ) lead to resistance to thyroid hormone (RTH). These TRβ mutants function in a dominant-negative fashion to interfere with the transcription activity of wild-type thyroid hormone receptors (TRs), leading to dysregulation of the pituitary-thyroid axis and resistance in peripheral tissues. The molecular mechanism by which TRβ mutants cause RTH has been postulated to be an inability of the mutants to properly release the nuclear corepressors (NCORs), thereby inhibiting thyroid hormone (TH)-mediated transcription activity. To test this hypothesis in vivo, we crossed Thrb(PV) mice (a model of RTH) expressing a human TRβ mutant (PV) with mice expressing a mutant Ncor1 allele (Ncor1(ΔID) mice) that cannot recruit a TR or a PV mutant. Remarkably, in the presence of NCOR1ΔID, the abnormally elevated thyroid-stimulating hormone and TH levels found in Thrb(PV) mice were modestly but significantly corrected. Furthermore, thyroid hyperplasia, weight loss, and other hallmarks of RTH were also partially reverted in mice expressing NCOR1ΔID. Taken together, these data suggest that the aberrant recruitment of NCOR1 by RTH TRβ mutants leads to clinical RTH in humans. The present study suggests that therapies aimed at the TR-NCOR1 interaction or its downstream actions could be tested as potential targets in treating RTH.
منابع مشابه
Oncogenic Actions of the Nuclear Receptor Corepressor (NCOR1) in a Mouse Model of Thyroid Cancer
Studies have suggested that the nuclear receptor corepressor 1 (NCOR1) could play an important role in human cancers. However, the detailed molecular mechanisms by which it functions in vivo to affect cancer progression are not clear. The present study elucidated the in vivo actions of NCOR1 in carcinogenesis using a mouse model (Thrb(PV/PV) mice) that spontaneously develops thyroid cancer. Thr...
متن کاملNuclear receptor corepressor (NCOR1) regulates in vivo actions of a mutated thyroid hormone receptor α.
Genetic evidence from patients with mutations of the thyroid hormone receptor α gene (THRA) indicates that the dominant negative activity of mutants underlies the pathological manifestations. However, the molecular mechanisms by which TRα1 mutants exert dominant negative activity in vivo are not clear. We tested the hypothesis that the severe hypothyroidism in patients with THRA mutations is du...
متن کاملCloning and characterization of a corepressor and potential component of the nuclear hormone receptor repression complex.
Nuclear hormone receptors are potent repressors of transcription in the unliganded state. We describe here the cloning of a nuclear receptor corepressor that we call SUN-CoR (Small Unique Nuclear receptor CoRepressor), which shows no homology to previously described nuclear hormone receptor corepressors, N-CoR, or SMRT. SUN-CoR is a highly basic, 16-kDa nuclear protein that is expressed at high...
متن کاملNCoR1 regulates thyroid hormone receptor isoform-dependent adipogenesis.
We previously showed that two thyroid hormone receptor (TR) isoforms--TRα1 and TRβ1--differentially regulate thyroid hormone (triiodothyroxine, T(3))-stimulated adipogenesis in vivo. This study aims to understand the role of the nuclear receptor corepressor, NCoR1, in TR isoform-dependent adipogenesis. We found that T(3)-stimulated adipogenesis of 3T3-L1 cells was accompanied by progressive los...
متن کاملThe nuclear corepressors recognize distinct nuclear receptor complexes.
The thyroid hormone receptor (TR) and retinoic acid receptor (RAR) isoforms have the capacity to silence gene expression in the absence of their ligands on target response elements. This active repression is mediated by the ability of the corepressors, nuclear receptor corepressor (NCoR) and silencing mediator of retinoid and thyroid hormone receptors (SMRT), to recruit a complex containing his...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 42 شماره
صفحات -
تاریخ انتشار 2011